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Abstract
Recent numerical developments in the study of glassy systems have shown
that it is possible to give a purely geometric interpretation of the dynamic
glass transition by considering the properties of unstable saddle points of the
energy. Here we further develop this approach in the context of a mean-field
model, by analytically studying the properties of the closest saddle point to
an equilibrium configuration of the system. We prove that when the glass
transition is approached the energy of the closest saddle goes to the threshold
energy, defined as the energy level below which the degree of instability of
the typical stationary points vanishes. Moreover, we show that the distance
between a typical equilibrium configuration and the closest saddle is always
very small and that, surprisingly, it is almost independent of the temperature.

PACS numbers: 0570F, 6460, 6470P, 7510N

The glass transition occurs when the relaxation time of a substance increases upon cooling of
many orders of magnitude in a very narrow interval of temperature, without the onset of any
crystalline order. Even though dramatic changes in the mechanical properties of the sample
occur, it is impossible to define a strict transition temperature, because the dynamic process
leading to the glassy phase is continuous, albeit very sudden. This is indeed one of the most
tricky points in the study of glassy systems: the so-called glass transition cannot actually be
associated with the genuine divergence of any dynamic or thermodynamic quantity. In fact, its
very definition as a reference temperature is based upon convention: in supercooled liquids,
it has been agreed to fix the glass transition temperature Tg at the point where the viscosity of
the sample (which is one of the macroscopic manifestations of the relaxation time) is of order
1013P .

On the other hand, in the case of fragile supercooled liquids [1] there is at least another
important value of the temperature which is useful to describe and interpret experimental data:
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that is, the temperature TMCT where mode coupling theory (MCT) locates a purely dynamic
transition [2]. Such a transition is spurious, since what is observed in real experiments
and simulations is just a dynamical crossover from a diffusive regime to an Arrhenius (or
super-Arrhenius) one. However, MCT describes well the dynamics of fragile liquids for
T > TMCT and, even though the MCT transition is smeared out in reality, the MCT temperature
still remains a meaningful reference value marking the border between purely diffusive and
activated slow dynamics [3].

The lack of a strict dynamic transition is not common to all glassy systems. It has
been discovered in the past [4] that some mean-field models for spin-glasses display a
phenomenology quite similar to the one of real structural glasses and supercooled liquids,
but for a notable difference: in these mean-field systems there is a true divergence of the
relaxation time, with no associated thermodynamic anomaly. This fact makes the definition
of a dynamic critical temperature Td completely unambiguous for these models. Besides, the
dynamical equations which describe the behaviour of these systems above Td coincide with
those obtained by MCT [5]. Thus, for these models MCT is exact, and Td therefore coincides
with TMCT. The most deeply studied among these systems is thep-spin spherical model [6–12],
henceforth indicated as pSM.

A key feature of the pSM is the possibility to explain the dynamic glass transition at
Td as the result of a purely geometric transition taking place in the energy landscape of the
system [8–10]. At a given energy density, called threshold energy Eth, there is a qualitative
change in the stability properties of the landscape: below Eth and down to the ground state
energy E0 minima dominate, whereas above Eth unstable saddles are the most numerous
stationary points of the Hamiltonian. It can be proved that in such a system the dynamic glass
transition occurs when the equilibrium energy density becomes equal to the energy density
of the threshold states at that temperature [8, 9]. In other words, in the pSM the dynamic
glass transition at Td and the geometric transition at Eth are essentially two faces of the same
phenomenon. Due to this fact, the structure and properties of unstable stationary points in the
pSM have been the object of a number of investigations in recent years [12–14].

Infinite-lifetime metastable states cannot exist in finite-dimensional systems, and therefore
we cannot expect to find a divergence of the relaxation time with no associated thermodynamic
transition in non-mean-field models. However, a strict geometric transition at a threshold
energy may very well occur also in more realistic systems, such as supercooled liquids, even if
its dynamical counterpart is smeared out by the finite-dimensional nature of the system (i.e. by
the finite lifetime of the threshold minima). If this were true, the dynamic crossover at TMCT,
which in supercooled liquids marks the onset of activated glassy dynamics, would actually be
the manifestation of a more fundamental and sharply defined geometric transition occurring
at a certain critical threshold energy.

This scenario has been numerically investigated very recently in [15, 16] for various
Lennard-Jones (LJ) systems, and from a more speculative point of view in [17]. In particular,
in [15] a well defined threshold potential energy has been located and associated to the onset
of glassy dynamics in the system. Moreover, it has been directly shown in [19] that the energy
landscape of LJ models and that of the pSM are indeed very similar. These studies seem
therefore to confirm the idea that, even in realistic systems, the dynamic crossover observed
at TMCT is the consequence of the sharp change in the topology of the energy landscape at the
threshold energy.

The approaches of [15–17] all have as a vital starting point the assumption that the time
evolution of the system in the phase space is in some way influenced by the nearby saddle
points of the potential energy. However, this fact has not been directly proved, and the
circumstantial evidence is mainly of a numerical nature. In particular, it may be objected
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that the trajectory of the system at equilibrium is never even close to saddles, especially above
the glass transition, where it may be argued that free diffusion in the phase space implies that
the energy landscape and its stationary points are completely irrelevant (for the relevance of
saddles in zero-temperature dynamics: see [13]). Even in the pSM, there has been, up to now,
little evidence of any direct connection between dynamics of the system equilibrated above Td

and saddle points of the energy above Eth (see, however, the approach of [14]). Furthermore,
even assuming that the dynamic trajectory stays somewhat close to saddles, it remains to be
directly demonstrated that such objects do play a role in the transition. More precisely, one
should prove that the properties of these supposedly close saddles indeed display some anomaly
at the dynamic transition.

The aim of this paper is therefore to analytically investigate what is the role of saddles in
the equilibrium dynamics of the pSM above Td. In order to do this we introduce a tool which
allows for the exact location of the closest saddle points to an equilibrium configuration at
temperature T . In this way we will be able to study how the properties of these closest saddles
vary with the temperature when the dynamic transition is approached, thus answering some of
the questions raised above.

The Hamiltonian of the pSM is given by

H =
N∑

i1<···<ip
Ji1···ip τi1 · · · τip = 1

p!

N∑
i1···ip

Ji1···ip τi1 · · · τip + O(1/N) (1)

where the spins satisfy the spherical constraint
∑

i τ
2
i = N . The quenched couplings Ji1···ip

are Gaussian-distributed random variables with variance J 2 = p!/2Np−1. By means of the
Lagrange method, we can find the stationary points of the Hamiltonian on the sphere and
therefore write the equations satisfied by the saddle points of H with energy density E:

1

p!

N∑
i2···ip

Jk,i2···ip τi2 · · · τip − Eτk = 0 k = 1, . . . , N. (2)

In general, the number N (E) of solutions of equations (2) with energy density E is
exponentially large in the size of the systemN . Thus, the quantity which is normally computed
is the complexity (or configurational entropy), defined as the logarithmic density of this number,
�(E) = 1

N
log N (E). The nature of the saddle points of H is, in principle, not only specified

by their energy density E, but also by their instability index K , that is the number of negative
eigenvalues of the Hessian matrix. However, previous studies of the pSM have shown that
there is a well defined relation between energy density and index K(E), and that at any fixed
energy level E only stationary points with index K(E) dominate the energy landscape in the
thermodynamic limit [9,12,18]. Therefore, by fixing the energy density of a saddle point toE,
we are automatically fixing its index to K(E). A crucial feature of the pSM is that the typical
saddle index is extensive, K = O(N), as long as the energy density is above a value called
threshold, Eth, while K = 0 for E � Eth. This means that minima dominate over saddles
below the threshold, while saddles of indexK(E) > 0 are the most numerous stationary points
for E > Eth. In this sense, we can say that at Eth a geometric transition takes place. More
precisely, if we introduce the index density k = K/N , we have

k(E) = p

π(p − 1)


arctan


−

√
E2

th − E2

E


 +

E

4

√
E2

th − E2


 E � Eth

k(E) = 0 E � Eth.

(3)
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Note that k(E) is a monotonically increasing function of the energy E. Remarkably, when
the equilibrium energy density of the system becomes equal to the internal energy density of
the threshold minima the system undergoes a dynamic glass transition, which we will indicate
with Td. To better specify this statement, we have to distinguish between the bare energy E

of a minimum, and its internal energy U(T ): that is, the energy of a system equilibrated in
that minimum at temperature T 4. Of course, the quantity U(T ) is equal to the bare energy E
plus a vibrational contribution due to thermal fluctuations. At the dynamic glass transition Td

we have that Ueq(Td) = Uth(Td), where Ueq(T ) is the global equilibrium energy density of the
system, and Uth(Td) = Eth+ vibrations.

Our aim in this paper is to analyse the structure of the saddle points around an equilibrium
configuration thermalized at temperature T > Td. We therefore need a notion of distance to
give a meaning to this statement. Given two configurations σ and τ we define a co-distance,
or overlap, qστ , as

qστ = 1

N

N∑
i

σiτi .

Similar configurations have q ∼ 1, while different ones have q ∼ 0. Our strategy will be to fix
a reference equilibrium configuration σ and compute the complexity of the saddles points τ
close to it as a function of their overlap qστ . The value of the overlap where this quantity goes
to zero will give the distance of the closest stationary points to σ . Indeed, for larger overlaps,
i.e. smaller distances, a negative complexity indicates a vanishing probability of finding a
stationary point.

In order to do this we have to calculate how many saddles τ , with a given energy E,
happen to have an overlap q with a reference equilibrium configuration σ . Clearly, this
number formally depends on σ itself and on the disorder J . However, as always done in
similar calculations [11,20,21], we can assume that in the thermodynamic limit N → ∞ this
quantity is self-averaging with respect to the distribution of σ and J , and therefore we can
average it over the Gaussian distribution of the disorder (indicated with a bar) and over the
equilibrium distribution of σ at temperature T . In this way we can define the saddle complexity
as

�s(q,E, β) ≡ 1
N

∫
Dσ
Z(β)

e−βH(σ)

×log
∫

Dτ
∏

k δ
(

1
p!Jk,i2···ip τi2 · · · τip − Eτi

) ∣∣∣det
(

1
p!Jk,l,i3···ip τi3 · · · τip − Eδkl

)∣∣∣ δ(q − qστ )

(4)

with

Z(β) =
∫

dσ e−βH(σ)

and where integration is carried out over spherical configurations only. To understand
equation (4) it is convenient to read it from right to left: first, under the τ integral, we calculate
using the standard method of [22] the number of solutions of equations (2), putting an extra
constraint on the overlap they must have with σ . Second, we take the logarithm of this quantity,
and we average it over the equilibrium distribution of σ . Finally, we average everything over
the disorder J . As we can see, �s depends on the temperature T = 1/β at which the reference
configuration σ is equilibrated, on the energyE of the saddles τ we are counting, and finally on

4 In other terms, ifmi is the local magnetization of the system equilibrated in the minimum, and q = 1/N
∑

i m
2
i is the

self-overlap (i.e. the magnetization norm, which is related to thermal fluctuations), we can define a bare magnetization
as m̂i = mi√

q
. The bare energy density is then given by E = 1

N
H(m̂i).
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the overlap q between σ and τ . We stress that, by construction, σ is an independent equilibrium
configuration, irrespective of the energy and the distance of the saddle τ .

In order to perform the averages in (4) it is convenient to use the replica method, writing

Z−1 = lim
n→0

Zn−1

〈log(·)〉 = lim
m→0

1

m
log〈(·)m〉.

(5)

In this way we have

�s(q,E, β) = lim
n,m→0

1

Nm
log

∫
Dσa Dτα e−β ∑

a H(σa)

×
∏
kα

δ

(
1

p!
Jk,i2···ip τ

α
i2

· · · ταip − Eταi

) ∣∣∣∣det

(
1

p!
Jk,l,i3···ip τ

α
i3

· · · ταip − Eδkl

)∣∣∣∣ δ(q − qσ1τα ) (6)

with a = 1, . . . , n and α = 1, . . . , m. The explicit calculation of �s from equation (6) can
be performed by using the standard tools of the replica method: variational parameters are
introduced and the integrals are evaluated exactly in the limitN → ∞ by means of the steepest
descent method. Of course, this is possible thanks to the mean-field nature of the model. Here,
we will skip most of the details and just state the final result. The interested reader may refer
to [11], where a technically similar calculation is performed. The full expression for the saddle
complexity is

�s(q,E, β) = 1

2
+

pE2

2(p − 1)
+

1

2
log

(
p − 1

2p

)
+

1

4p
(x1 − x0r

p−1) +
1

2
βqp−1w + Ey1

+
p − 1

4p

(
y2

1 − y2
0r

p−2
)

+
1

2
log%1 +

%1

2%2
+

1

2

(
r − q2

1 − r

)
(7)

with

%1 = (x1 − x0)(1 − r) + (y1 − y2)
2

%2 = (x0 + w2)(1 − r) + (y1 − y0)[2(y0 − qw)− (r − q2)(y1 − y0)/(1 − r)].
(8)

As customary in the context of the replica method, the set of variational parameters x =
(x0, x1, y0, y1, w, r) is fixed be means of the steepest descent equations ∂�s/∂x = 0, which
we have solved numerically. We remark that the expression above for �s is only valid in the
regime E � Eth. In showing the results we will assume p = 3.

First of all, we are interested in studying the behaviour of �s(q,E, T ) as a function of q,
at fixed E and T . In this way we can define an overlap q0(E, T ) where �s goes to zero: this
overlap gives the distance of the closest saddle with energyE to an equilibrium configuration at
temperature T . In figure 1 we plot �s as a function of the overlap q, for T = Td and E = Eth.
At this temperature many properties of equilibrium landscape are known and an interpretation
of the results is therefore much simpler. At Td the system equilibrates inside a threshold state
with bare energy density Eth and self-overlap (i.e. largeness) qth [9]. In naive terms we can
then imagine that our typical equilibrium configuration σ lies in a well whose largeness is
given by qth and whose bottom is at energy densityEth. In this case it is evident that the closest
stationary point to σ is precisely the bottom of the well. The point where the complexity
goes to zero must therefore give the overlap between the centre of the threshold minimum τ

and one of its typical equilibrium configurations σ . This overlap can be easily computed by
noticing that qστ = 1

N

∑
i〈σiτi〉 = 1

N

∑
i miτi , where the thermal average is restricted to a

threshold state, and mi indicates the local magnetization of that state. In the pSM this local
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Figure 1. Saddle complexity as a function of the overlap q, for E = Eth and T = Td. Inset: same
curve in linear–log scale. The complexity goes to zero at q0 = √

qth = 0.71 for p = 3.
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Figure 2. The overlap q0 where the saddle complexity goes to zero as a function of the energy E
of the saddles, at five different values of the temperature above Td. The full vertical line marks the
value of the threshold energy Eth.

magnetization can be expressed directly in terms of the well minimum asmi = √
qthτi [9] (see

also footnote 4) and we immediately get qστ = √
qth. Consistently with this result we find that

q0(Eth, Td) = √
qth. (9)

This result can be appreciated in figure 1.
Moreover, a careful analysis of �s for q ∼ q0 shows that

�s(q,Eth, Td) ∼ (q − q0)
5 q ∼ q0. (10)

Note that the exponent is the same as found in [11] for the approach to zero of the constrained
complexity of threshold Thouless–Anderson–Palmer (TAP) solutions. This is a consistency
check for the present calculation.

In the light of our original aim to find the closest saddles, it is interesting to plot the value
of q0 as a function of the energy density E of the saddles we are counting. We expect this
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Figure 3. The overlap qs of the closest saddles to an equilibrium configuration at temperature T ,
as a function of β = 1/T . Inset: enlargement of the same plot for β ∼ βd.

curve to have a maximum at a value Es(T ) corresponding to the energy of the closest, and
thus the most relevant, saddles. Accordingly, in figure 2 we plot q0(E) as a function of E for
different values of the temperature. In particular, the full curve represents q0(E) for T = Td:
as we see, this is a steadily decreasing curve having its maximum at the threshold energy. This
means that, as previously said, the closest stationary point to an equilibrium configuration at
the glass transition is a threshold minimum, Es(Td) = Eth. However, if we now increase the
temperature T of the equilibrium configuration, we expect the energy of the closest saddle to
increase as well, together with its instability index. In other words, the higher the temperature
of σ , the higher will be the energy, and thus the degree of instability, of the closest possible
saddle (we remind that K(E) is a monotonic increasing function of E, with K(Eth) = 0).
This hypothesis is confirmed in figure 2: the maximum of these curves moves to the right as
the temperature is increased, disclosing a well defined relation Es(T ), which we will analyse
carefully later. For the moment, let us note that a further consistency check of our calculation
is that for T = ∞ we find Es = 0 (see figure 2). At very high temperatures the equilibrium
configuration σ is just a random configuration of the system, therefore the closest stationary
points to it will be the most numerous ones in absolute terms. In the pSM it can be proved
that the most numerous saddles have E = 0 and K = N/2 [9, 18].

It is interesting to study the behaviour of the overlap qs where the curves q0(E) have their
maximum. This overlap is a measure of the closeness of an equilibrium configuration σ to its
nearest saddle point τ . What is surprising about figure 2 is that by varying the temperature
the value of qs remains almost constant. To better investigate this point we plot in figure 3
qs as a function of β. We can see that qs is practically always constant, except for β ∼ βd,
where it sharply jumps to

√
qth. This fact means that the distance between an equilibrium

configuration and its closest saddles is almost independent of the temperature. This value of
the overlap is qs ∼ 0.68, which is indeed quite high, being comparable to the overlap between
equilibrium configurations and the bottom of the minima below the glass transition (see, for
example, figure 1). This result answers one of the main questions raised in the introduction:
above the dynamic glass transition, the equilibrium trajectory indeed always stays very close
to unstable stationary points of the Hamiltonian, exactly as below Td, it stays close to stable
minima. On the other hand, it is clear from figure 2 that for T > Td the closest minima (i.e.
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Figure 4. The bare energy Es of the closest saddles compared with the equilibrium energy Ueq.
Inset: enlargement of the same plot for β ∼ βd. The slope of the curve changes in this regime.

the ones with E = Eth) are very far from the dynamic trajectory. In this sense, it is justifiable
to say that the equilibrium dynamics of the system above the glass transition may be described
as an evolution among the neighbourhoods of saddle points, rather than among basins of the
minima [17].

The distance of the closest saddle does not change with T but, as we have seen, the energy
density Es does. In figure 4 we plot this energy as a function of the inverse temperature and
compare it with the equilibrium energy density of the system above the glass transition, i.e.
Ueq(T ) = −β/2 [6]. First of all we note that the energy of the saddle is always smaller than
the energy of the equilibrium configuration, despite the two objects being so close in the phase
space. This fact has been already noted in the context of a numerical study of a LJ system
in [16]. It is tempting to interpret the difference Ueq(T ) − Es(T ) as a pseudo-vibrational
contribution of saddles, due to the fact that, even though K > 0, the largest part of the Hessian
eigenvalues is positive, as long as Eth < E < 0. Unstable saddles are not trapping objects, of
course, but they may have a substantially long life-time provided that K is small enough. This
phenomenon is at the basis of the pseudo-vibrational contribution of saddles.

This last hypothesis is supported by another interesting result we find, that is

Es(T ) → Eth T → Td. (11)

Therefore, the energy density of the closest saddles to an equilibrium configuration goes to
the threshold energy density at the dynamic glass transition. Clearly, at Td the difference
between Es(Td) and Ueq(Td) is given by the vibrational contribution of thermal fluctuations
inside threshold minima, which is of order kBT . When T > Td we see that the two curves
continuously approach one another, as the saddle instability indexK increases with the energy.
These results seem thus to suggest that, even though the system is not confined into any given
saddle point, the disproportion between trapping and un-trapping directions, that is the fact
thatK < N/2, is sufficient to produce a vibrational contribution that we may broadly interpret
as thermal fluctuations around saddle points.

Further support for this idea comes from the comparison of our results with the approach
developed in [14], where a dynamic description of thepSM based on the concept of quasi-states
is introduced. More specifically, for temperatures slightly above the dynamic transition Td,
quasi-states are related to critical points of the TAP free energy (for a more detailed definition
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see [14]) and it can be shown that their global contribution gives rise to the paramagnetic free
energy of the system. Interestingly enough, we found that the bare energy density of these
quasi-states (defined as in footnote 4) is to a good degree of accuracy (within 1%) equal to the
energy density Es of the closest saddles. This indicates that the quasi-states introduced in [14]
may be interpreted as our closest saddles plus the pseudo-vibrational contribution mentioned
before. This interpretation confirms the idea, outlined in [14] and made more explicit in the
present paper, that above Td the paramagnetic state is made up of disjoint quasi-states around
saddles. Equilibrium dynamics can thus be thought of as evolution from one quasi-state (i.e.
one saddle and its own neighbourhood) to another one. A difference between the present
approach and the one of [14] is that the pseudo-states of [14] can be defined only very close to
Td, while, as we have seen, closest saddles exist at any temperature, although, of course, we
do not expect them to have any relevance for T  Td.

Given the relation k(E)between index and energy of the typical saddles, we can introduce a
temperature-dependent index by using the energy densityEs(T ) of the closest saddles, namely
k(T ) = k(Es(T )). Clearly, this index vanishes at the dynamic transition temperature Td, which
is just another way of describing the geometric transition occurring at the threshold energy
Eth. Close to Td we find that Es is linear in β and this, together with the analytic form of k(E),
implies that

k(T ) ∝ (T − Td)
3/2 T ∼ Td. (12)

Summarizing, in the context of thepSM we have calculated the complexity of the saddle points
at fixed overlap with a reference equilibrium configuration, above the dynamic glass transition.
In this way we were able to identify what are the energy and distance of the closest saddles
at any given temperature. We found that the distance between equilibrium configuration and
closest saddle is almost independent of the temperature and is very small. Moreover, the energy
of the closest saddles intersects the threshold energy at the dynamic glass transition. Finally,
we interpreted the difference between equilibrium energy and energy of the closest saddle as a
pseudo-vibrational contribution due to the fact that a number of trapping directions larger than
the number of non-trapping ones may give rise to thermal fluctuations around unstable saddle
points. The present study supports the idea that dynamics in glassy systems for T > Td can
be described in terms of evolution in the phase space among the neighbourhoods of unstable
saddles and strengthens the hypothesis that the glass transition, even in finite-dimensional
systems, is just the manifestation of the topological transition between saddles and minima
dominated regions of the phase space.

Acknowledgments

It is a pleasure to thank Silvio Franz for an important discussion. The work of AC was supported
by EPSRC, under grant GR/L97698.

References

[1] Angell C A 1985 Strong and fragile liquids Relaxation in Complex Systems ed K Ngai and G B Wright
(Springfield, VA: National Technical Information Series)
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